Math 270: Differential Equations Day 13 Part 1

Section 4.6: Variation of Parameters Part 2

Section 4.6: Variation of Parameters (Part 2)

Method of Variation of Parameters

To determine a particular solution to ay'' + by' + cy = f:

(a) Find two linearly independent solutions $\{y_1(t), y_2(t)\}$ to the corresponding homogeneous equation and take

$$y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$$
.

(b) Determine $v_1(t)$ and $v_2(t)$ by solving the system in (9) for $v'_1(t)$ and $v'_2(t)$ and integrating.

(9)
$$y_1v_1' + y_2v_2' = 0$$
$$y_1'v_1' + y_2'v_2' = \frac{f}{a}$$

(c) Substitute $v_1(t)$ and $v_2(t)$ into the expression for $y_p(t)$ to obtain a particular solution.

Section 4.6: Variation of Parameters (Part 2)

Example 3 Find a particular solution of the variable coefficient linear equation $t^2y'' - 4ty' + 6y = 4t^3$, t > 0, given that $y_1(t) = t^2$ and $y_2(t) = t^3$ are solutions to the corresponding homogeneous equation.